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Abstract— This paper presents CrackVision, a bagging
ensemble integrating a Bayesian Convolutional Neural Network
(BCNN) and Vision Transformer (ViT) for multiclass concrete
crack severity classification. Unlike binary detection systems,
CrackVision categorizes cracks into four levels—None, Low,
Medium, High—with uncertainty awareness through Monte
Carlo dropout. The system was trained on 60,000 augmented
crack images and evaluated against standalone models.
CrackVision achieved 99.31% accuracy and Fl-scores up to
99.94%, improving performance by 2.17% over BCNN and
0.25% over ViT. Confusion matrix analysis confirmed fewer
misclassifications than BCNN across all severity levels.
Predictive uncertainty estimates enhance reliability for safety-
critical deployment. These findings highlight CrackVision's
potential as a robust tool for automated infrastructure
monitoring, particularly in disaster-prone regions requiring
accurate crack assessment.
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I. INTRODUCTION

A. Background of the Study

Concrete is the backbone of modern infrastructure, yet its
durability is threatened by environmental exposure, material aging,
and seismic activity. Cracks are among the earliest indicators of
structural distress, and their timely detection is crucial for ensuring
public safety [1]. Recent earthquakes in Mindanao highlight the
urgent need for scalable inspection methods to support disaster
resilience in the Philippines [1], [10].

Conventional non-destructive testing (NDT) techniques such as
Ultrasonic Pulse Velocity and Ground Penetrating Radar achieve
high accuracy but require specialized equipment and can cost up to
PHP 357,000 per inspection, limiting their feasibility for widespread
use [2], [3]. By contrast, Al-driven image-based methods offer
scalable monitoring using simple RGB imagery. However, most
existing approaches are limited to binary classification (crack vs. no
crack) and neglect severity assessment, despite engineering
standards that define severity by crack width and extent [4], [5].
Furthermore, these models often overfit to controlled datasets and
degrade under variable lighting and textures common in field
conditions.

B. Problem Statement

Most image-based crack detection systems remain confined to
binary outcomes, offering limited guidance for repair prioritization.
Models often exhibit overfitting and high variance, performing
poorly under real-world conditions [4], [5]. Compounding this is the
absence of uncertainty handling, leaving predictions without
confidence scores essential for safety-critical use [6]. These gaps
hinder the deployment of reliable, severity-aware Al inspection
systems, particularly in disaster-prone regions such as the
Philippines [1], [2].

C. Significance of the Study

This study introduces CrackVision, an ensemble of Bayesian
CNNs and Vision Transformers for four-level crack severity
classification with integrated uncertainty awareness [6], [7]. By
benchmarking against standalone models, CrackVision delivers
greater robustness, reduced variance, and severity-sensitive outputs
[8], [9]. Supporting data-driven repair prioritization and enabling
cost-efficient monitoring at scale, the system enhances
infrastructure safety while contributing to the UN Sustainable
Development Goals (SDGs) on industry, innovation, and
sustainable cities [2], [10].

D. Objectives

This study aims to develop CrackVision, a robust ensemble
framework for multiclass crack severity classification. The specific
objectives are to:

1. Design and implement fine-tuned Bayesian Convolutional
Neural Network (BCNN) and Vision Transformer (ViT)
models for four-level crack severity classification: None,
Low, Medium, High.

2. Develop CrackVision, a bagged BCNN-ViT ensemble
using bootstrap aggregation to improve robustness, reduce
variance, and support uncertainty-aware predictions.

3. Evaluate CrackVision’s performance using accuracy,
precision, recall, Fl-score, confusion matrices, and
expected calibration error and compare it with standalone
BCNN and ViT models to validate ensemble
effectiveness.



E. Scope and Limitations

The study classifies RGB surface cracks as None, Low,
Medium, and High. To improve robustness, geometric and contrast-
based adjustments are used to the Concrete Cracking Level dataset
[10]. It excludes mobile deployment, subsurface faults, and
structural degradation such spalling or corrosion. Evaluation
emphasizes generalizability and uncertainty-awareness for accurate
severity classification [7].

II. RELATED WORKS

Crack width determines severity, with several classification
systems in literature. Research-based frameworks use different
scales than industry guidelines, which use 0.3 mm for structural
intervention [11]. This study uses a four-level classification: None,
Low (<6 mm), Medium (>7-17 mm), and High (>18 mm) based on
established frameworks [11]. Yang et al. demonstrated the
correlation between crack width and reinforcement corrosion [13],
while Villanueva et al. classified severity using deep learning [14].

Visual inspection and NDT methods such as Ultrasonic Pulse
Velocity (UPV) and Ground Penetrating Radar (GPR) remain
widely used [2], [3]. Mehndi et al. emphasized causes and
evaluation, while Tosti & Ferrante demonstrated GPR for
subsurface defects [4]. Though reliable, these methods are costly
and less feasible for routine, large-scale monitoring.

CNNs such as AlexNet, VGGNet, and ResNet improved crack
detection but were commonly applied to binary classification [5].
Mesquita applied Bayesian CNNs (BCNNs) for uncertainty-aware
outputs, following the foundation of Gal & Ghahramani [6], [7].
Dosovitskiy introduced Vision Transformers (ViT), with
Shamsabadi and other researchers showing global-context
advantages in crack imagery [8], [17], [19]. Yet, uncertainty-aware
multiclass severity classification remains underexplored.

Ensemble methods enhance robustness, with Fan et al.
confirming CNN ensembles outperform single models in pavement
crack detection [9]. Ganaie et al. reviewed ensembles as effective
under noisy data [15], while Breiman introduced bagging as a
variance-reduction strategy [16]. However, severity classification
using bagging ensembles with uncertainty-awareness remains
limited—a gap this study addresses.

III. METHODS
A. Research Design

This study used a quantitative research design to create and
assess a deep learning framework for multiclass crack severity
classification. The ensemble was tested for performance validation
by fine-tuning Bayesian CNN and Vision Transformer models on an
augmented crack dataset and combining them through bootstrap
aggregation, using standard classification metrics.

B. Datasets
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Fig.2. Sample images from USU Concrete Crack Images dataset

Two datasets were employed: Mendeley Concrete Cracking
Level [10] with 20,000 RGB images (227227 pixels) across four

severity levels, and USU Concrete Crack Images [18] as an unseen
test set. Evaluation Metrics

C. Experimental Setup

The models were trained in a controlled environment to ensure
reproducibility. Table V summarizes the key hyperparameters,
compute setup, and training configuration.

TABLE I. EXPERIMENTAL SETUP

Component Configuration
Environment Google Colab Pro (GPU: NVIDIA A100)
Access Machine Macbook Air M1, 8GB RAM, macOS 13.6
Framework PyTorch 2.2, CUDA 12.1
Random Seed 42 (dataset shuffling, initialization, augmentation)
Optimizer AdamW, learning rate 1 x 10~4, weight decay 1 x 10~4
Batch Size 32, Epochs = 15 (early stopping, patience = 5)
Scheduler Cosine annealing with warm restarts
BCNN ResNet-18 backbone, Dropout p = 0.4, 20 MC forward passes
ViT ViT-Base, Patch size 16, Input 244 x244
Preprocessing Resize 244 x244, flips, rotations, color jitter

Ensemble Fusion Weighted average, tuned on validation (best o = 0.5)

D. Evaluation Metrics

The model's performance was evaluated using four established
metrics: Accuracy, Precision, Recall, and F1-score. These metrics
assess categorization efficacy across the four severity levels in
relation to the ground truth labels.

Accuracy is defined as

TP+ TN (1)

Accuracy =———
y TP+ TN + FP + FN

where TP, TN, FP, and FN represent true positives, true negatives,
false positives, and false negatives, respectively.

Precision and Recall is defined as

.. TP TP @)
Precision =——, Recall=———
TP + FP TP +FN
F1-score is defined as
F1 =x Precision X Recall (3)

Precision + Recall

Macro-averaging was utilized to ensure equitable treatment of
all classes. Furthermore, confusion matrices were created to analyze
misclassifications, and for BCNN and CrackVision, prediction
variance from stochastic forward passes was documented as an
indicator of uncertainty [6], [7].

IV. IMPLEMENTATION AND ANALYSIS

A. Data Preprocessing
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After extraction, the Zhang Feng Qi (Mendeley) Concrete
Cracking Level dataset (20,000 images) was used as the primary
source for model development. This dataset was split before
augmentation into 70% training (14,000 images), 15% validation
(3,000 images), and 15% testing (3,000 images) using stratified
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Fig.3. Preprocessed Dataset



sampling to preserve class distribution. Only the training set was
augmented using vertical flips, 90° and 270° rotations, contrast
adjustment, and edge enhancement, expanding it to approximately
60,000 images. The validation and test sets remained unmodified to
avoid data leakage. To evaluate cross-dataset robustness, the
Maguire et al. (USU Concrete Crack Images dataset) with 40,000
images was employed exclusively as an external test set, providing
an independent benchmark. All images were resized to 224x224
pixels, normalized with ImageNet statistics, and shuftled with a
fixed random seed (42).

B. System Architectures
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Fig. 4 Fine-Tuned BCNN System Architecture.
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Fig. 4 shows the architecture of the Bayesian Convolutional
Neural Network (BCNN) fine-tuned for multiclass crack severity
classification. Input crack images were resized to 224x224 pixels,
normalized with ImageNet statistics, and processed through a
pretrained ResNet-18 backbone on ImageNet. Convolutional layers
extract hierarchical features; the final classification head includes a
linear layer, ReLU activation, dropout (p=0.4), and a second linear
layer to categorize features into four severity classes: None, Low,
Medium, and High. Softmax probabilities were calculated using the
cross-entropy loss function, with Monte Carlo dropout applied
during inference to conduct multiple stochastic forward passes,
ensuring predictive accuracy and uncertainty estimates.
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Fig. 5. Fine-Tuned ViT System Architecture.

Fig. 5 illustrates the Vision Transformer (ViT-Base Patchl6-
224) architecture fine-tuned for multiclass crack severity
classification. Input crack images are resized to 224x224 pixels,
augmented through flips, rotations, and color jitter, and then
segmented into fixed-size patches with positional embeddings.
Patches are projected linearly and processed through the
Transformer encoder, utilizing multi-head self-attention and feed-
forward layers pretrained on ImageNet. The encoder is unchanged,
but the classification head is altered with a linear layer that maps the
CLS token to four severity levels: None, Low, Medium, and High.
Softmax probabilities are utilized with the cross-entropy loss
function to generate final predictions.
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Fig. 6. CrackVision Ensemble System Architecture.

Fig. 6 shows the architecture of the CrackVision ensemble
system for multiclass crack severity classification. Bootstrap
sampling is applied to the original dataset to create training subsets
for independently fine-tuning a Bayesian Convolutional Neural
Network (BCNN) and a Vision Transformer (ViT). Each model
predicts class probabilities for four severity levels: None, Low,
Medium, and High. The outputs are aggregated using a weighted
averaging scheme to form the CrackVision ensemble prediction.
The combination of BCNN and ViT improves generalization and
robustness, resulting in a more reliable prediction than either model
individually.

C. Base Learner Training (BCNN and ViT)

The CrackVision ensemble integrated two meticulously
optimized base learners: a BCNN (ResNet-18 with dropout layers
for Monte Carlo uncertainty estimates) and a ViT-Base Patch16-224
(pretrained on ImageNet and enhanced with flips, rotations, and
color jitter). Both utilized cross-entropy loss, AdamW optimization,
and cosine annealing scheduling. The BCNN collected local texture
features with a knowledge of uncertainty, whereas the ViT modeled
global structural patterns, so offering complementing capabilities
for the ensemble.

D. CrackVision Ensemble System Training

The CrackVision ensemble was implemented using a bagging
strategy that combined a Bayesian Convolutional Neural Network
(BCNN) and a Vision Transformer (ViT), each fine-tuned on
independently resampled bootstrap subsets of the training data to
promote diversity and reduce correlated errors. The BCNN (ResNet-
18 backbone) incorporated Monte Carlo dropout (p=0.4) with 20
stochastic forward passes for uncertainty-aware predictions, while
the ViT (Base Patch16-224) leveraged ImageNet pretraining to
capture long-range spatial patterns. Their outputs were fused using
a weighted averaging rule:

Pens = a - PBCNN + (1 — @) - PViT

where a is the ensemble weight tuned globally on the validation set
via grid search (@€{0.2,0.3,...,0.8}0€{0.2,0.3,...,0.8}), with the
best performance observed at approximately a=0.5.

E. Model Performance

To account for statistical variability, all models were trained and
evaluated across five random seeds. Results are reported as mean +
standard deviation (std).

TABLE Il. OVERALL ACCURACY COMPARISON

Model Accuracy (%)
Bayesian Convolutional Neural Network ~ 97.14 + 0.15
Vision Transformer (ViT) 99.06 = 0.10
CrackVision Ensemble 99.31 + 0.07

The results indicate a distinct performance hierarchy, with
CrackVision attaining 99.31% accuracy, surpassing both BCNN at
97.14% and ViT at 99.06%. The 2.17% improvement over BCNN



is significant for safety-critical infrastructure, while the 0.25%
advantage over ViT, although minor, is constant and pertinent in
areas where near-perfect accuracy is essential. Each architectural
iteration enhanced its predecessor, with CrackVision exhibiting the
optimal equilibrium of accuracy and reliability.

TABLE lll. BCNN MULTICLASS PERFORMANCE METRICS

Class None Low Medium High

Precision  97.00% + 0.18  98.85% £ 0.12  93.01%+ 0.25 99.96%= 0.05

Recall 98.20% +0.20  94.58% £0.15  96.12% £ 0.21 99.70% £ 0.07

Fl-score  97.59% +0.22  96.67% +0.22  94.54% + 0.23 99.83% £ 0.06

The Bayesian Convolutional Neural Network (BCNN) achieved
strong overall performance with F1-scores ranging from 94.54% to
99.83% across different severity classes. The model demonstrated
strength in identifying high-severity cracks (F1-score: 99.83%) and
non-cracked surfaces (Fl-score: 97.59%). However, the model
showed relatively lower performance in medium-severity crack
detection (Fl-score: 94.54%), indicating potential challenges in
distinguishing intermediate severity levels.

TABLE IV. VIT MULTICLASS PERFORMANCE METRICS

Class None Low Medium High

Precision  99.36% %+ 0.10 99.00% + 0.11  99.05%% 0.12  99.00% % 0.08

Recall 99.42% £ 0.12 98.52%% 0.14  98.40%+ 0.10  99.96% + 0.05

Fl1-score 99.40% %+ 0.09 98.76%+ 0.12  98.22%+ 0.11  99.00% + 0.07

The Vision Transformer (ViT) model exhibited superior and
more balanced performance compared to BCNN, achieving
consistently high F1-scores across all classes (98.22% to 99.40%).
The ViT model's self-attention mechanism proved particularly
effective for capturing spatial relationships in crack patterns,
resulting in minimal performance variance between classes
(standard deviation of F1-scores: 0.58%).

TABLEV. CRACKVISION MULTICLASS PERFORMANCE METER

Class None Low Medium High

Precision ~ 99.30% £ 0.09  99.70% £0.08  98.25% £0.12  99.00% £0.07

Recall 99.46% + 0.08  98.78% £0.10  99.08% £0.11  99.00% +0.06

F1-score 99.38% £ 0.07  99.23% £0.09  98.67% £0.10  99.94% £0.18

CrackVision attained Fl-scores ranging from 98.67% to
99.94% across various severity levels, exceeding BCNN by 2.17%
and ViT by 0.25%, while demonstrating enhanced consistency
(SD=0.54%) and robust generalization on the previously
unencountered USU dataset. It demonstrated exceptional
proficiency in identifying high-severity cracks (F1 = 99.94%),
facilitated by bootstrap resampling to minimize mistakes and a
globally optimized weighting parameter (a) that equilibrated
contributions from both models.

F. Confusion Matrix Analysis
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Fig. 7. BCNN Confusion Matrix.

The BCNN model (Figure 7, accuracy: 97.14%) showed specific
confusion patterns:

1. None class: 4909 correctly classified, with 92 false positives
misclassified as Medium

2. Medium class: Most challenging class with 150 samples
misclassified as None and 41 as Low

3. Cross-class confusion: Primary confusion occurred between
adjacent severity levels, indicating the model's logical
progression in severity assessment

ViT — ROT270 (acc=0.9906)

None

Predicted

Medium

Normalized by true col

High

Fig. 8. ViT Confusion Matrix.

The ViT model (Figure 8, accuracy: 99.06%) demonstrated
superior classification with minimal confusion:

1. Balanced performance: More uniform distribution of correct
predictions across all classes

2. Reduced medium-class confusion: Only 36 Medium samples
misclassified as None (vs. 150 in BCNN)

3. Better boundary definition: Clearer separation between
severity levels, particularly for Medium class
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Fig.9. CrackVision Confusion Matrix

The CrackVision ensemble (Figure 9, accuracy: 99.31%)
achieved the optimal balance:

1. Minimal misclassifications: Significantly reduced confusion
across all class boundaries

2. Improved medium-class detection: Only 46 Medium samples
misclassified (compared to 150 in BCNN)

3. Enhanced reliability: Consistent performance across all
severity levels



Bootstrap resampling and adaptive ensemble weighting
integrated BCNN's local texture sensitivity with ViT's global spatial
awareness, resulting in enhanced performance. Analysis of the
confusion matrix reveals that BCNN misclassified 150 medium-
severity cracks with an accuracy of 97.14%, but ViT achieved an
accuracy of 99.06% with just 36 misclassifications. CrackVision
further reduced misclassifications, maintaining 99.31% accuracy
and uniform performance across all severity levels.

G. Calibration Analysis

TABLE VI. CALIBRATION RESULTS

Model ECE (%)

Bayesian Convolutional Neural Network 4.82 +0.12
Vision Transformer (ViT) 2.71 4= 0.09
CrackVision Ensemble 1.35 4+ 0.07

To evaluate predicted dependability, we calculated the Expected
Calibration Error (ECE) across five iterations and produced
reliability diagrams for the models. Calibration guarantees that
anticipated probability accurately represent actual accuracy, which
is essential for safety-critical applications. BCNN exhibited
considerable miscalibration with overconfidence at intermediate
levels, whereas ViT demonstrated superior calibration but was
marginally underconfident at elevated confidence levels.
CrackVision attained optimal calibration with the minimal ECE of
1.35%, signifying probabilities that align closely with actual
accuracy.
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Fig.10. Reliability Diagram.

As shown in figure 10, while the BCNN curve deviated from
the ideal diagonal and the ViT curve showed mild under
confidence, the CrackVision curve closely followed the diagonal,
demonstrating superior calibration. This indicates that the ensemble
not only improved accuracy but also produced better-calibrated
confidence scores, increasing its trustworthiness for real-world
deployment.

V. CONCLUSION AND RECOMMENDATION

This research created CrackVision, a bagging ensemble
including a Bayesian CNN (BCNN) and a Vision Transformer (ViT)
for the categorization of multiclass crack severity. It attained an
accuracy of 99.31% with Fl-scores of 99.94%, representing an
enhancement of 2.17% compared to BCNN and 0.25% relative to
ViT, while providing uncertainty-aware predictions by Monte Carlo
dropout. CrackVision demonstrates significant potential for
automated infrastructure monitoring, particularly in disaster-prone
areas where accurate crack evaluation is essential.

Further studies should broaden datasets to encompass diverse
concrete types, surface conditions, and settings to improve
generalization. Subsequent instructions involve implementing the
model on mobile or edge devices with real-time and offline
functionalities, enhancing uncertainty quantification, and
broadening the framework for longitudinal crack monitoring in
extensive infrastructure.
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