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Abstract— This paper presents CrackVision, a bagging 
ensemble integrating a Bayesian Convolutional Neural Network 
(BCNN) and Vision Transformer (ViT) for multiclass concrete 
crack severity classification. Unlike binary detection systems, 
CrackVision categorizes cracks into four levels—None, Low, 
Medium, High—with uncertainty awareness through Monte 
Carlo dropout. The system was trained on 60,000 augmented 
crack images and evaluated against standalone models. 
CrackVision achieved 99.31% accuracy and F1-scores up to 
99.94%, improving performance by 2.17% over BCNN and 
0.25% over ViT. Confusion matrix analysis confirmed fewer 
misclassifications than BCNN across all severity levels. 
Predictive uncertainty estimates enhance reliability for safety-
critical deployment. These findings highlight CrackVision's 
potential as a robust tool for automated infrastructure 
monitoring, particularly in disaster-prone regions requiring 
accurate crack assessment. 
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I. INTRODUCTION 

A. Background of the Study 
 Concrete is the backbone of modern infrastructure, yet its 
durability is threatened by environmental exposure, material aging, 
and seismic activity. Cracks are among the earliest indicators of 
structural distress, and their timely detection is crucial for ensuring 
public safety [1]. Recent earthquakes in Mindanao highlight the 
urgent need for scalable inspection methods to support disaster 
resilience in the Philippines [1], [10]. 

 Conventional non-destructive testing (NDT) techniques such as 
Ultrasonic Pulse Velocity and Ground Penetrating Radar achieve 
high accuracy but require specialized equipment and can cost up to 
PHP 357,000 per inspection, limiting their feasibility for widespread 
use [2], [3]. By contrast, AI-driven image-based methods offer 
scalable monitoring using simple RGB imagery. However, most 
existing approaches are limited to binary classification (crack vs. no 
crack) and neglect severity assessment, despite engineering 
standards that define severity by crack width and extent [4], [5]. 
Furthermore, these models often overfit to controlled datasets and 
degrade under variable lighting and textures common in field 
conditions. 

B. Problem Statement 
 Most image-based crack detection systems remain confined to 
binary outcomes, offering limited guidance for repair prioritization. 
Models often exhibit overfitting and high variance, performing 
poorly under real-world conditions [4], [5]. Compounding this is the 
absence of uncertainty handling, leaving predictions without 
confidence scores essential for safety-critical use [6]. These gaps 
hinder the deployment of reliable, severity-aware AI inspection 
systems, particularly in disaster-prone regions such as the 
Philippines [1], [2]. 

C. Significance of the Study 

 This study introduces CrackVision, an ensemble of Bayesian 
CNNs and Vision Transformers for four-level crack severity 
classification with integrated uncertainty awareness [6], [7]. By 
benchmarking against standalone models, CrackVision delivers 
greater robustness, reduced variance, and severity-sensitive outputs 
[8], [9]. Supporting data-driven repair prioritization and enabling 
cost-efficient monitoring at scale, the system enhances 
infrastructure safety while contributing to the UN Sustainable 
Development Goals (SDGs) on industry, innovation, and 
sustainable cities [2], [10]. 

D. Objectives  
 This study aims to develop CrackVision, a robust ensemble 
framework for multiclass crack severity classification. The specific 
objectives are to: 

 

1. Design and implement fine-tuned Bayesian Convolutional 
Neural Network (BCNN) and Vision Transformer (ViT) 
models for four-level crack severity classification: None, 
Low, Medium, High. 

2. Develop CrackVision, a bagged BCNN–ViT ensemble 
using bootstrap aggregation to improve robustness, reduce 
variance, and support uncertainty-aware predictions. 

3. Evaluate CrackVision’s performance using accuracy, 
precision, recall, F1-score, confusion matrices, and 
expected calibration error and compare it with standalone 
BCNN and ViT models to validate ensemble 
effectiveness. 



. 
E. Scope and Limitations 
 The study classifies RGB surface cracks as None, Low, 
Medium, and High.  To improve robustness, geometric and contrast-
based adjustments are used to the Concrete Cracking Level dataset 
[10]. It excludes mobile deployment, subsurface faults, and 
structural degradation such spalling or corrosion. Evaluation 
emphasizes generalizability and uncertainty-awareness for accurate 
severity classification [7]. 

II. RELATED WORKS 

 Crack width determines severity, with several classification 
systems in literature.  Research-based frameworks use different 
scales than industry guidelines, which use 0.3 mm for structural 
intervention [11].  This study uses a four-level classification: None, 
Low (<6 mm), Medium (>7–17 mm), and High (>18 mm) based on 
established frameworks [11].  Yang et al. demonstrated the 
correlation between crack width and reinforcement corrosion [13], 
while Villanueva et al. classified severity using deep learning [14]. 

 Visual inspection and NDT methods such as Ultrasonic Pulse 
Velocity (UPV) and Ground Penetrating Radar (GPR) remain 
widely used [2], [3]. Mehndi et al. emphasized causes and 
evaluation, while Tosti & Ferrante demonstrated GPR for 
subsurface defects [4]. Though reliable, these methods are costly 
and less feasible for routine, large-scale monitoring. 

 CNNs such as AlexNet, VGGNet, and ResNet improved crack 
detection but were commonly applied to binary classification [5]. 
Mesquita applied Bayesian CNNs (BCNNs) for uncertainty-aware 
outputs, following the foundation of Gal & Ghahramani [6], [7]. 
Dosovitskiy introduced Vision Transformers (ViT), with 
Shamsabadi and other researchers showing global-context 
advantages in crack imagery [8], [17], [19]. Yet, uncertainty-aware 
multiclass severity classification remains underexplored. 

 Ensemble methods enhance robustness, with Fan et al. 
confirming CNN ensembles outperform single models in pavement 
crack detection [9]. Ganaie et al. reviewed ensembles as effective 
under noisy data [15], while Breiman introduced bagging as a 
variance-reduction strategy [16]. However, severity classification 
using bagging ensembles with uncertainty-awareness remains 
limited—a gap this study addresses. 

 
III. METHODS 

A. Research Design 

 This study used a quantitative research design to create and 
assess a deep learning framework for multiclass crack severity 
classification.  The ensemble was tested for performance validation 
by fine-tuning Bayesian CNN and Vision Transformer models on an 
augmented crack dataset and combining them through bootstrap 
aggregation, using standard classification metrics. 
 
B. Datasets 

 
Fig.1 Sample images from Mendeley Concrete Cracking Level dataset 

 
Fig.2. Sample images from USU Concrete Crack Images dataset 

 Two datasets were employed: Mendeley Concrete Cracking 
Level [10] with 20,000 RGB images (227×227 pixels) across four 

severity levels, and USU Concrete Crack Images [18] as an unseen 
test set. Evaluation Metrics 

 

C. Experimental Setup 

     The models were trained in a controlled environment to ensure 
reproducibility. Table V summarizes the key hyperparameters, 
compute setup, and training configuration. 

TABLE I. EXPERIMENTAL SETUP 

 

D. Evaluation Metrics 

 The model's performance was evaluated using four established 
metrics: Accuracy, Precision, Recall, and F1-score.  These metrics 
assess categorization efficacy across the four severity levels in 
relation to the ground truth labels. 
 

 Accuracy is defined as 

												Accuracy	=	 !"	$	!%	
!"	$	!%	$	&"	$	&%

	  (1) 

where TP, TN, FP, and FN represent true positives, true negatives, 
false positives, and false negatives, respectively.  

 

 Precision and Recall is defined as 

	

(2) 

 
 F1-score is defined as 

												F1	=	×		"'()*+*,-	×	/()011
"'()*+*,-	$	/()011

	  (3) 

 
 Macro-averaging was utilized to ensure equitable treatment of 
all classes.  Furthermore, confusion matrices were created to analyze 
misclassifications, and for BCNN and CrackVision, prediction 
variance from stochastic forward passes was documented as an 
indicator of uncertainty [6], [7]. 
 

IV. IMPLEMENTATION AND ANALYSIS 

A. Data Preprocessing 

 
Fig.3. Preprocessed Dataset 

 After extraction, the Zhang Feng Qi (Mendeley) Concrete 
Cracking Level dataset (20,000 images) was used as the primary 
source for model development. This dataset was split before 
augmentation into 70% training (14,000 images), 15% validation 
(3,000 images), and 15% testing (3,000 images) using stratified 



. 
sampling to preserve class distribution. Only the training set was 
augmented using vertical flips, 90° and 270° rotations, contrast 
adjustment, and edge enhancement, expanding it to approximately 
60,000 images. The validation and test sets remained unmodified to 
avoid data leakage. To evaluate cross-dataset robustness, the 
Maguire et al. (USU Concrete Crack Images dataset) with 40,000 
images was employed exclusively as an external test set, providing 
an independent benchmark. All images were resized to 224×224 
pixels, normalized with ImageNet statistics, and shuffled with a 
fixed random seed (42). 

B. System Architectures  

 
Fig. 4.Fine-Tuned BCNN System Architecture. 

 Fig. 4 shows the architecture of the Bayesian Convolutional 
Neural Network (BCNN) fine-tuned for multiclass crack severity 
classification.  Input crack images were resized to 224×224 pixels, 
normalized with ImageNet statistics, and processed through a 
pretrained ResNet-18 backbone on ImageNet.  Convolutional layers 
extract hierarchical features; the final classification head includes a 
linear layer, ReLU activation, dropout (p=0.4), and a second linear 
layer to categorize features into four severity classes: None, Low, 
Medium, and High.  Softmax probabilities were calculated using the 
cross-entropy loss function, with Monte Carlo dropout applied 
during inference to conduct multiple stochastic forward passes, 
ensuring predictive accuracy and uncertainty estimates. 

 

 
Fig. 5. Fine-Tuned ViT System Architecture. 

 Fig. 5 illustrates the Vision Transformer (ViT-Base Patch16-
224) architecture fine-tuned for multiclass crack severity 
classification. Input crack images are resized to 224×224 pixels, 
augmented through flips, rotations, and color jitter, and then 
segmented into fixed-size patches with positional embeddings. 
Patches are projected linearly and processed through the 
Transformer encoder, utilizing multi-head self-attention and feed-
forward layers pretrained on ImageNet. The encoder is unchanged, 
but the classification head is altered with a linear layer that maps the 
CLS token to four severity levels: None, Low, Medium, and High. 
Softmax probabilities are utilized with the cross-entropy loss 
function to generate final predictions. 

 
Fig. 6. CrackVision Ensemble System Architecture. 

 Fig. 6 shows the architecture of the CrackVision ensemble 
system for multiclass crack severity classification.  Bootstrap 
sampling is applied to the original dataset to create training subsets 
for independently fine-tuning a Bayesian Convolutional Neural 
Network (BCNN) and a Vision Transformer (ViT).  Each model 
predicts class probabilities for four severity levels: None, Low, 
Medium, and High.  The outputs are aggregated using a weighted 
averaging scheme to form the CrackVision ensemble prediction.  
The combination of BCNN and ViT improves generalization and 
robustness, resulting in a more reliable prediction than either model 
individually. 

C. Base Learner Training (BCNN and ViT) 

 The CrackVision ensemble integrated two meticulously 
optimized base learners: a BCNN (ResNet-18 with dropout layers 
for Monte Carlo uncertainty estimates) and a ViT-Base Patch16-224 
(pretrained on ImageNet and enhanced with flips, rotations, and 
color jitter). Both utilized cross-entropy loss, AdamW optimization, 
and cosine annealing scheduling. The BCNN collected local texture 
features with a knowledge of uncertainty, whereas the ViT modeled 
global structural patterns, so offering complementing capabilities 
for the ensemble. 

D. CrackVision Ensemble System Training 

 The CrackVision ensemble was implemented using a bagging 
strategy that combined a Bayesian Convolutional Neural Network 
(BCNN) and a Vision Transformer (ViT), each fine-tuned on 
independently resampled bootstrap subsets of the training data to 
promote diversity and reduce correlated errors. The BCNN (ResNet-
18 backbone) incorporated Monte Carlo dropout (𝑝=0.4) with 20 
stochastic forward passes for uncertainty-aware predictions, while 
the ViT (Base Patch16-224) leveraged ImageNet pretraining to 
capture long-range spatial patterns. Their outputs were fused using 
a weighted averaging rule: 

𝑃𝑒𝑛𝑠 = 𝛼 ⋅ 𝑃𝐵𝐶𝑁𝑁+ (1 − 𝛼) ⋅ 𝑃𝑉𝑖𝑇 

where α is the ensemble weight tuned globally on the validation set 
via grid search (𝛼∈{0.2,0.3,…,0.8}α∈{0.2,0.3,…,0.8}), with the 
best performance observed at approximately α=0.5. 

E. Model Performance 

To account for statistical variability, all models were trained and 
evaluated across five random seeds. Results are reported as mean ± 
standard deviation (std). 

TABLE II. OVERALL ACCURACY COMPARISON  

 
 The results indicate a distinct performance hierarchy, with 
CrackVision attaining 99.31% accuracy, surpassing both BCNN at 
97.14% and ViT at 99.06%. The 2.17% improvement over BCNN 



. 
is significant for safety-critical infrastructure, while the 0.25% 
advantage over ViT, although minor, is constant and pertinent in 
areas where near-perfect accuracy is essential. Each architectural 
iteration enhanced its predecessor, with CrackVision exhibiting the 
optimal equilibrium of accuracy and reliability. 

 

TABLE III. BCNN MULTICLASS PERFORMANCE METRICS 

Class None Low Medium High 

Precision 97.00% ± 0.18 98.85% ± 0.12 93.01%± 0.25 99.96%± 0.05 

Recall 98.20% ±	0.20 94.58% ±	0.15 96.12% ±	0.21 99.70% ±	0.07 

F1-score 97.59% ± 0.22 96.67% ±	0.22 94.54% ± 0.23 99.83% ± 0.06 
 

 

 The Bayesian Convolutional Neural Network (BCNN) achieved 
strong overall performance with F1-scores ranging from 94.54% to 
99.83% across different severity classes. The model demonstrated 
strength in identifying high-severity cracks (F1-score: 99.83%) and 
non-cracked surfaces (F1-score: 97.59%). However, the model 
showed relatively lower performance in medium-severity crack 
detection (F1-score: 94.54%), indicating potential challenges in 
distinguishing intermediate severity levels. 

 

TABLE IV. VIT MULTICLASS PERFORMANCE METRICS 

Class None Low Medium High 

Precision 99.36% ±  0.10 99.00% ± 0.11 99.05%± 0.12 99.00% ±	0.08 

Recall 99.42% ± 0.12 98.52%± 0.14 98.40%±  0.10 99.96% ±	0.05 

F1-score 
 

99.40% ±  0.09 
 

98.76%± 0.12 
 

98.22%±  0.11 
 

99.00% ± 0.07 
 

 

 The Vision Transformer (ViT) model exhibited superior and 
more balanced performance compared to BCNN, achieving 
consistently high F1-scores across all classes (98.22% to 99.40%). 
The ViT model's self-attention mechanism proved particularly 
effective for capturing spatial relationships in crack patterns, 
resulting in minimal performance variance between classes 
(standard deviation of F1-scores: 0.58%). 

 

TABLE V. CRACKVISION MULTICLASS PERFORMANCE METER 

Class None Low Medium High 

Precision 99.30% ± 0.09 99.70% ±0.08 98.25% ±0.12 99.00% ±0.07 

Recall 99.46% ± 0.08 98.78% ±0.10 99.08% ±0.11 99.00% ±0.06 

F1-score 99.38% ± 0.07 99.23% ±0.09 98.67% ±0.10 99.94% ±0.18 
 

 CrackVision attained F1-scores ranging from 98.67% to 
99.94% across various severity levels, exceeding BCNN by 2.17% 
and ViT by 0.25%, while demonstrating enhanced consistency 
(SD=0.54%) and robust generalization on the previously 
unencountered USU dataset. It demonstrated exceptional 
proficiency in identifying high-severity cracks (F1 = 99.94%), 
facilitated by bootstrap resampling to minimize mistakes and a 
globally optimized weighting parameter (𝛼) that equilibrated 
contributions from both models. 

F. Confusion Matrix Analysis  

 
Fig. 7. BCNN Confusion Matrix.  

The BCNN model (Figure 7, accuracy: 97.14%) showed specific 
confusion patterns: 

1. None class: 4909 correctly classified, with 92 false positives 
misclassified as Medium 

2. Medium class: Most challenging class with 150 samples 
misclassified as None and 41 as Low 

3. Cross-class confusion: Primary confusion occurred between 
adjacent severity levels, indicating the model's logical 
progression in severity assessment 

 
Fig. 8. ViT Confusion Matrix. 

 The ViT model (Figure 8, accuracy: 99.06%) demonstrated 
superior classification with minimal confusion: 

1. Balanced performance: More uniform distribution of correct 
predictions across all classes 

2. Reduced medium-class confusion: Only 36 Medium samples 
misclassified as None (vs. 150 in BCNN) 

3. Better boundary definition: Clearer separation between 
severity levels, particularly for Medium class 

 
Fig.9. CrackVision Confusion Matrix 

 The CrackVision ensemble (Figure 9, accuracy: 99.31%) 
achieved the optimal balance: 

1. Minimal misclassifications: Significantly reduced confusion 
across all class boundaries 

2. Improved medium-class detection: Only 46 Medium samples 
misclassified (compared to 150 in BCNN) 

3. Enhanced reliability: Consistent performance across all 
severity levels 



. 
 Bootstrap resampling and adaptive ensemble weighting 
integrated BCNN's local texture sensitivity with ViT's global spatial 
awareness, resulting in enhanced performance. Analysis of the 
confusion matrix reveals that BCNN misclassified 150 medium-
severity cracks with an accuracy of 97.14%, but ViT achieved an 
accuracy of 99.06% with just 36 misclassifications. CrackVision 
further reduced misclassifications, maintaining 99.31% accuracy 
and uniform performance across all severity levels. 

G. Calibration Analysis 

TABLE VI. CALIBRATION RESULTS 

 
 To evaluate predicted dependability, we calculated the Expected 
Calibration Error (ECE) across five iterations and produced 
reliability diagrams for the models. Calibration guarantees that 
anticipated probability accurately represent actual accuracy, which 
is essential for safety-critical applications.  BCNN exhibited 
considerable miscalibration with overconfidence at intermediate 
levels, whereas ViT demonstrated superior calibration but was 
marginally underconfident at elevated confidence levels.  
CrackVision attained optimal calibration with the minimal ECE of 
1.35%, signifying probabilities that align closely with actual 
accuracy. 

 
Fig.10. Reliability Diagram.  

 As shown in figure 10, while the BCNN curve deviated from 
the ideal diagonal and the ViT curve showed mild under 
confidence, the CrackVision curve closely followed the diagonal, 
demonstrating superior calibration. This indicates that the ensemble 
not only improved accuracy but also produced better-calibrated 
confidence scores, increasing its trustworthiness for real-world 
deployment. 

V. CONCLUSION AND RECOMMENDATION 

 This research created CrackVision, a bagging ensemble 
including a Bayesian CNN (BCNN) and a Vision Transformer (ViT) 
for the categorization of multiclass crack severity. It attained an 
accuracy of 99.31% with F1-scores of 99.94%, representing an 
enhancement of 2.17% compared to BCNN and 0.25% relative to 
ViT, while providing uncertainty-aware predictions by Monte Carlo 
dropout. CrackVision demonstrates significant potential for 
automated infrastructure monitoring, particularly in disaster-prone 
areas where accurate crack evaluation is essential. 

 Further studies should broaden datasets to encompass diverse 
concrete types, surface conditions, and settings to improve 
generalization. Subsequent instructions involve implementing the 
model on mobile or edge devices with real-time and offline 
functionalities, enhancing uncertainty quantification, and 
broadening the framework for longitudinal crack monitoring in 
extensive infrastructure. 
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